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1 Preface
These are notes taken from the 2019 ArizonaWinter School, which are perhaps closer to transcriptions,
as I’ve referred back to the videos to include as much detail as possible. As such, I make no claims
of originality, I’ve merely compiled everything into one place in written form for my own purposes,
and share it in the hopes that it may be useful to others as well.

D. Zack Garza, Sunday 22nd March, 2020
17:49

2 Lecture 1: A1 Enumerative Geometry
Enumerative geometry counts algebro-geometric objects, and in order to actually obtain an invariant
number at the end of the day one uses an algebraically closed field k or C. This is essentially because
the conditions imposed are polynomial, and polynomials of degree n over a closed field always have
n roots.

The goal here is to record information about the fields of definition. However, since we may no
longer have invariant numbers as solutions to polynomial equations, we replace this with a notion of
weights to get an “invariance of bilinear form” principle instead. Over characteristic not 2, we can
use quadratic forms, which ties to Lurie’s first talk.

2.1 Example: Lines on a Smooth Cubic Surface

Joint work with Jesse Kass

A cubic surface X consists of the C solutions to a polynomial in three variables, i.e.

X =
{

(x, y, z) ∈ C3
∣∣∣ f(x, y, z) = 0

}
,

where f is degree 3. In general, we want to compactify, so we view X ↪→ CP3 as

CP3 =
{

x = [w, x, y, z] 6= 0
∣∣∣ ∀λ ∈ C×, x = λx

}
and so

X =
{

[w, x, y, z] ∈ CP3
∣∣∣ f(w, x, y, z) = 0

}
where f is homogeneous.

The surface X is smooth if the underlying points form a manifold, or equivalently if the partials
don’t simultaneously vanish.
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2.1 Example: Lines on a Smooth Cubic Surface

Theorem 2.1(Salmon-Cayley, 1849).
If X is a smooth cubic surface, then X contains exactly 27 lines.

Example 2.1.
The Fermat cubic f(w, x, y, z) = w3 + x3 + y3 + z3.

We can find one line, given by

L =
{

[s,−s, t,−t]
∣∣∣ s, t ∈ CP1

}
,

and in fact this works for any λ, ω such that λ3 = ω3 = −1, yielding

L′ =
{

[s, λs, t, ωt]
∣∣∣ s, t ∈ CP1

}
.

We can also permute s, t around to get more lines, and by counting this yields 27 distinct possibilities:

3 choices for λ, 3 choices for ω, and 1
2

(
4
2

)
ways to pair them with the s, t in the original L.

There is a proof in the notes that these are the only lines, which is relatively elementary.

2.1.1 Modern Proof

We’ll use characteristic classes, which we’ll later replace by an A1 homotopy theory variant.

Let Gr(1, 3) be the Grassmannian parametrizing 1-dimensional subspaces of CP3, where the C
points of this space parameterize 2-dimensional subspaces W ⊆ C4. This is a moduli space of the
lines we’re looking for.

Let

S −→ Gr(1, 3)

be the tautological bundle where the fiber is simply given by SW = W . We can also form the bundle

(Sym3S)∨ −→ Gr(1, 3)

where the fiber over the point corresponding to W is all of the cubic polynomials on W , i.e.

(Sym3S)∨W = (Sym3W )∨.

Explicitly, we have the following two bundles to work with:

W S Gr(1, 3)

(
Sym3W

)∨ (
Sym3S

)∨
Gr(1, 3)
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2.1 Example: Lines on a Smooth Cubic Surface

Our chosen f determines an element of (Sym3C4)∨, which is thus a section σf of the second bundle
above, where

σf (W ) = f |W .

We thus have

PW ∈ X ⇐⇒ σf (W ) = 0,

i.e. the line corresponding to W is in our surface exactly when this section is zero. We now want to
count the zeros of σf , which is exactly what the Euler class does.

To be precise, the Euler class counts the zeros of a section of a properly oriented vector bundle with
a given weight. Let V −→M be a rank r R- vector bundle over a dimension r real manifold where
we assume that V is oriented.

We choose R here because C is slightly too nice and gives us a preferred orientation (which
we’ll want to track later.)

For any section σ with only isolated zero, we’ll assign a weight to each zero which comes from the
topological degree function

deg : [Sr−1, Sr−1] −→ Z,

where we use the brackets to denote homotopy classes of maps.

Definition: Let p ∈M where σ(p) = 0, and define degp(σ) in the following way:

Choose local coordinates near p. Since the zeros are isolated, we can choose a ball Bε(p) such that
x ∈ Bε(p)− {p} =⇒ σ(x) 6= 0. Choose a local trivialization of the total space V . This allows us to
view σ : Rr −→ Rr as a real function.

We can choose coordinates such that p = 0 in the domain, so σ(0) = 0, and moreover the image
σ(Bε(p)) = R− {0}. We can then form a function

σ : ∂Bε(p) = Sr−1 −→ Sr−1 = ∂σ(Bε(p))

x 7→ σ(x)
‖σ(x)‖ ,

and so we can take degp(σ) := deg σ.

There is indeterminacy here up to elements of GL(r,R) which could possibly affect the sign, however,
but this can be fixed using the assumption that V is oriented and choosing local trivializations for
which the orientations are compatible. This gives us a well-defined local degree of a section at a
zero.

The Euler class, which only depends on the bundle and not the section, is given by

e(V ) =
∑{

p

∣∣∣ σ(p)=0
}degp(σ).
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2.2 What about R?

It can be shown that because X is smooth, the zeros are all simple and so in the complex case, the
degrees are all 1. We thus obtain

|{lines on X}| = e((Sym3S)∨),

where the RHS is independent of X and can be computed using the splitting principle and the
cohomology of Gr.

2.2 What about R?
Schlafli, 19th century: X can have 3, 7, 15 or 27 lines. So it’s not constant, and thus there’s not an
invariant number here, but Segre (1942) distinguished between hyperbolic and elliptic lines.

Recall the characterization of elements in AutL for L = RP1 (real lines) as elliptic/hyperbolic: we
have AutL ∼= PGL(2,R), so pick some I corresponding to a matrix

[I] =
(
a b
c d

)
, z 7→ az + b

cz + d

where the second formulation above shows that there are two fixed points, since solving for z 7→ z
yields a quadratic equation. So we have

Fix(I) =
{
z ∈ C

∣∣∣ cz2 + (d− z)z + b = 0
}
,

and we characterize I by the following cases:

• Fix(I) contains two real points: hyperbolic
• A complex conjugate pair: elliptic

So we’ll associate an involution to L, and port over these notions of hyperbolic/elliptic. As we’ll see
later, for each point on L, there will be a unique other point that has the tangent space, and this
involution will swap them.

Let p ∈ L, and consider TpX
⋂
X . Since L is in both of the varieties we’re intersecting here, and

we can apply Bezout’s theorem, we know that its complement will some degree 2 variety Q (since
the total degree is 3).

So we can write TpX
⋂
X = L

⋃
Q. We know that L

⋂
Q will be the intersection of a degree 1

and a degree 2 curve, which will have 2 points of intersection. At one of these points, say p, Q and
L will intersect transversally, and so the tangent vectors TpQ and TpL give a 2-dimensional frame,
which yields a plane P ⊆ TpX. Since X is smooth, we get equality and P = TpX.

This also holds for the second point of intersection, p′, and so we take the involution I(p) = p′ and
vice-versa. We then say L is elliptic/hyperbolic exactly when I is.

A natural way to see that there should be a distinction between two types of lines is to use spin
structures. Consider a physical cubic surface sitting inside R3, and push the tangent plane alone a
line. There are two things that can happen – one is a twisting by a nontrivial element of π1SO3(R),
the other is no twisting at all.
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2.2 What about R?

Example 2.2.
Look at the Fermat cubic surface x3 + y3 + z3 = −1

Interpretation of this image: X ⊂ R3 is a surface, which has 3 lines that are contained in a
plane. We this view X from above this plane, marking a plus/minus to denote the relative
height of the surface within each bounded region. Plus denotes part of the surface that bubbles
up over the plane, having positive height/z coordinates, etc.

(DZG) This took me a while to visualize – what worked for me was thinking about “egg crate”
padding:

2 LECTURE 1: A1 ENUMERATIVE GEOMETRY 6



2.3 A1 Homotopy Theory

After thinking about what physically happens as you push a plane around, it becomes clear that
these three lines are all hyperbolic. Note that this question is the same as asking if a path in the
frame bundle lifts.

Although the number of lines isn’t a constant, we can take a “signature” sort of formula to obtain
an invariant. In this case, the number hyperbolic lines minus the number of elliptic lines is constant.
In this case, the constant is 3.

General mantra for A1 homotopy theory: if you have a result that works over C and R, it may be a
result in A1 theory that has realizations recovering the original results.

2.3 A1 Homotopy Theory
This will allow us to do with schemes much of what we can do in Top. Smooth schemes behave like
manifolds, where there are balls around points. The convention here will be that we’re working over
smooth schemes, denoted Smk where k is a field.

Remark: in my notation I use RPn,CPn, and Pn(k) to denote various projective spaces. I’ll
adopt Kirsten’s convention here and just denote Pn(k) as Pn.

We’ll get spheres from SnA := Pn/Pn−1. One nice result due to Morel is that there is a degree map

[SnA, SnA] −→ GW (k),
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2.4 The Grothendieck-Witt Group

where the target is not the integers in this case, but rather a group of bilinear forms that are
quadratic in characteristic not equal to 2. It is the Grothendieck-Witt group, whose elements are
formal difference of bilinear forms.

Thus the group itself is the group completion of nondegenerate symmetric isomorphism classes of
bilinear forms V 2 −→ k where V is a finite-dimensional k-vector space.

The group structure arises because if we have two bilinear forms B,B′ on vector spaces V,W
respectively, then we can define a new form on V ⊕W by working in components and declaring
orthogonality between any of the factors. We then take formal differences of these, and inherit a
ring structure from the tensor product of forms.

Bilinear forms over fields can all be diagonalized, although in characteristic 2, this only holds in a
stable sense.

2.4 The Grothendieck-Witt Group
Since we can diagonalize, the group GW (k) has a presentation coming from the one dimensional
forms. Any of these work as a generator, so we have

• Generators: 〈a〉 where a ∈ k×, corresponding to the form

〈a〉 : k2 −→ k

(x, y) 7→ axy.

• Relations: if we change the basis of k using a multiplication by b ∈ k×, we get
〈
ab2
〉

= 〈a〉. >
This means that a ∈ k×/(k×)2

– We also get 〈a〉+ 〈b〉 = 〈a+ b〉+ 〈ab(a+ b)〉

There are many concrete computations of this known for global fields, local fields, finite fields,
function fields, etc.

Example 2.3 (The Complex Numbers).
Computing GW (C): The generators are in bijection with k×/(k×)2, but since every element
of C is a square, so there’s only one element here. We thus obtain

GW (C)
∼=−→ Z

β 7→ dimV

which is realized by taking the rank.

Example 2.4 (The Reals).
Computing GW (R): We still have the rank, but now we can also take the signature, so we
have

GW (R) rank×signature−−−−−−−−−→ Z2,

although a minor parity issue crops up here that can be fixed without damaging the isomorphism
type.
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2.5 Euler Class

Example 2.5 (Finite Fields).
Computing GW (Fq): We can make a matrix out of how β acts on basis elements and take the
determinant of it to obtain an invariant called the discriminant, and so

GW (Fq)
discriminant×rank−−−−−−−−−−−→ F×q /(F×q )2 × Z

Note that the quotient is needed because we can change basis in Fq, which amounts to conjugating
by a matrix A, and so this discriminant is only well-defined up to squares.

2.5 Euler Class
There is an Euler class in this setting,

e(V ) =
∑

p

∣∣∣ σ(p)=0

degp(σ).

Letting X be a smooth cubic surface over k, then a line L ⊂ X will be a closed point of the
Grassmannian Gr(1, 3), so we can think of it as points of the form

L =
{

[a, b, c, d]s+ [a′, b′, c′, d′]t
∣∣∣ s, t ∈ P1(k(L

}
where the extension field k(L) = k(a, b, c, d, a′, b′, c′, d′) is obtained by adjoining the coefficients to k.

DZG: I think these are always separable, mentioned later in the talk.

We thus get

P1(k(L)) ∼= L ⊆
closed

subscheme

Xk(L) ⊆ P3(k(L)).

Given such a line L ⊆ X, similar to the real setting, we obtain an involution I ∈ AutL ∼=
PGL(2, k(L)) after choosing coordinates. We also find that Fix(L) again falls into two cases:

• 2k(L) points, or
• 2 conjugate points in some quadratic extension k(L)[

√
D] where D ∈ k(L)×/(k(L)×)2. These

correspond to the oddities in the tangent plane in the real case.

We then define

Type(L) = 〈D〉 ∈ GW (k(L)),

or equivalently D = ab− cd when I =
(
a b
c d

)
, in which case Type(L) = 〈−1〉 deg I.

2.6 An Analogous Trace Formula
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Theorem 2.2.
Supposing X is a smooth cubic surface over k of characteristic not equal to 2, we then have∑

L∈X
Trk(L)/kType(L) = One fixed quadratic form = 15 〈1〉+ 12 〈−1〉

where the trace/transfer maps are defined as

Trk(L)/k : GW (k(L)) −→ GW (k)

(V 2 β−→ k(L)) 7→ (V 2 β−→ k) ◦ TraceGalois

where TraceGalois comes from summing the conjugates. Note that we can do this because we
can view V as a vector space over either k or k(L), so we end up with a quadratic form over k.

Note: we have a well-defined map in the other direction, since the GW is a stable homotopy group
of spheres.

Example 2.6 (Complex Numbers).
Let k = C, then apply rank to get 15 + 12 = 27 on the RHS, while since every element is a
square, the Type is just 1, so we get 27 total.

Example 2.7 (Reals).
Let k = R, apply signature. If L is defined over C, so the type is 1, and we’re just left with
the trace of C/R – but this contributes a +1 and −1, so there is no contribution. What’s left
are the lines of R, and since we set it up so type 1 lines are hyperbolic, we just get the trace
15− 12 = 3.

Example 2.8 (Finite Fields).
Let k = Fq. We can define lines in Fnq , and the “begin a square” partitions (Fnq )× into two
disjoint subsets, we can assign types and we let squares be the hyperbolic elements.

We thus get {
Elliptic lines L
with k(L) = Fodd

}
−
{

Hyperbolic lines L
with k(L) = Feven

}
≡ 0 mod 2

which follows from computing the discriminant of the given form.

3 Lecture 2: User’s Guide to A1 Homotopy Theory
Particularly, arithmetically enriching enumerative results. The first part of this talk focuses on
setting up the correct category for this theory.
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3.1 Adding Colimits

3.1 Adding Colimits
Recall from last time that we wanted to form a space analogous to a sphere, given by Pn/Pn−1,
which we get from a colimit

Pn−1 −−−−→ Pny y
{pt} −−−−→ Pn/Pn−1

which is the same as requiring that for maps from the total space into the quotient, maps coming
from the quotiented space and maps coming from the point agree when the compositions are taken.

Example: Another example of a colimit is the union, which is given by

U
⋂
V −−−−→ Uy y

V −−−−→ U
⋃
V

These correspond to crushing and gluing operations, which we can do with topological spaces
and would like to do with schemes as well. We’d also like smooth schemes to behave like smooth
manifolds, in the sense that we can take an open ball around each point. This is part of what A1

homotopy theory buys us.

We want colimits, so we add them: let Smk to be the category of smooth schemes over k. There is
a Yoneda embedding

Smk
Y−→ Func(Smk

op, Sset) = PreSh(Smk)
X 7→ hom( · , X).

where one might normally require the target to be sets, but since we’d like homotopy colimits
and to be able to do things analogous to fibrant/cofibrant replacements, we aim for simplicial sets
instead which can essentially be regarded as topological spaces. We can also identify the target with
presheaves on the category of smooth schemes.

We’re building a category for a homotopy theory, which means we need either

• A simplicial model category, or
• An ∞-category

Both have notions of fibrations, cofibrations, an associated homotopy category, weak equivalences,
etc, and PreSh(Smk) has this structure.

3.2 Preserving Old Colimits: Picking a Topology
This construction is essentially “freely adding colimits”. Since Smk had colimits (e.g. the union/intersection
of open sets), we want Y to preserve these. We fix this be forcing certain maps to be equivalences
using Bousfield localization.
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3.2 Preserving Old Colimits: Picking a Topology

This is carried out by looking at open covers

U =
∐
α

Uα −→ X

and making a simplicial object out of this map and forcing a weak equivalence

cos0
x

∐
α

Uα
'−→ X

(DZG) Note: this may be the Cech nerve, not entirely sure. Pretty sure I got the notation
wrong though.

This gives us a localization functor

PreSh(Smk)
Lτ−−→ Shk

for τ a Grothendieck topology which declares certain classes of maps to be covers. We have some
choices of topology here, roughly in order of increasing number of open sets:

• Zariski (on schemes)
• Nisnevich
• Etale

Definition 3.0.1 (Etale).
A map f ∈ hom(X,Y ) ∈ Smk (not necessarily smooth) is etale at a point x ∈ X if the induced
map on tangent/cotangent spaces is an isomorphism:

TxX
f∗
−→ Tf(x)Y

Definition 3.0.2 (Etale Covers).
A map f :

∐
α

Uα −→ X is an etale cover if it is etale and surjective.

Definition 3.0.3 (Nisnevich Covers).
A map f :

∐
α

Uα −→ X is a Nisnevich cover if it is an etale cover and x ∈ X =⇒ ∃u ∈

U
∣∣∣ f∗ : k(x)

∼=−→ k(u).

This topology has a few nice properties:

• Smooth schemes have etale maps into An, inclusions/closed immersions Z ↪→ X induce maps
Ad ↪→ An
• Satisfies descent for K-theory
• The cohomological dimension equals the Krull dimension
• Cohomology can be computed Cech complexes
• More listed in Voevodsky’s original paper
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3.3 Contracting the Affine Line

3.3 Contracting the Affine Line
The last step is forcing A1 to be contractible, i.e. A1 × X ' X, which will come from another
localization LA. This composition will land us in the homotopy theory we want:

Smk
Y−→ PreShk

Lτ−−→ Shk
LA−−→ Spck

where τ is the choice of the Nisnevich topology, and so we’ll call Spck our A1 homotopy theory.

3.4 Making Spheres
Given two pointed spaces X,Y , we have

X ∧ Y = X × Y
(X × {pt})

⋃
({pt} × Y )

In topology, we have Sm ∧ Sn = Sm+n. In A1 homotopy theory, we have functors to simplicial sets,
and so we can take constant functors, and in particular any element space living in simplicial sets is
in our new homotopy theory as well. So we have S1, we can also take Gm = A1 − {0}, and so we
have spheres

Sp+q,q = (S1)∧p ∧ (Gm)∧q.

Some of these end up being familiar spaces. For example, we can look at the colimit

Gm −−−−→ A1 ' {pt}y y
{pt} ' A1 −−−−→ P1

which follows from the fact that P1 = A1⋃ {∞} (yielding the top-right copy of A1), and we can
take a neighborhood around the point at ∞ to obtain the bottom-left copy – these intersect in Gm.

So P1 is the colimit of maps from Gm to a point, so we can conclude that

P1 ' ΣGm = S1 ∧Gm.

We can also show An − {0} ' (S1)∧n−1 ∧ (Gm)∧n. This will rely on a general fact about the colimit
of X × Y with its projections is a suspension, given by

X × Y −−−−→ Xy y
Y −−−−→ ∴ ΣX ∧ Y

and so we can proceed by induction on the following diagram:

(An−1 − {0})× (A1 − {0}) −−−−→ (An−1 − {0})× A1y y
An × (A1 − {0}) −−−−→ An − {0}
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3.5 Thom Spaces

We also have Pn/Pn−1 ' (S1)∧n ∧ (Gm)∧n. This can be show because Pn/Pn−1 ' Pn/Pn − {0}
because A1 is trivial and we can homotop the embedded Pn−1 down to the origin, giving a line
bundle over Pn−1. We can then cut out the copy of Pn−1 at infinity, yielding An/An − {0} '
{pt}/An − {0} = Σ(An − {0}), where the last equality comes from looking at a similar colimit
diagram as earlier.

3.5 Thom Spaces
These can be made out of vector bundles, which will prove to be useful in viewing smooth schemes
like manifolds. Let V −→ X be an algebraic vector bundle. Then the Thom space

Th(V ) = V

V −X
' P(V ⊕O)

PV

where X here corresponds to the zero section, O is the trivial line bundle, and PV is the projec-
tivization of V where the coordinate is zero.

Note: If this was a virtual vector bundle, we could make a Thom spectrum.

The next theorem gives us neighborhoods around points

Theorem 3.1(The Purity Theorem).
Let Z ↪→ X be a closed immersion in Smk. Consider X

X − Z
, in topology we could take a

tubular neighborhood around Z and view this as a neighborhood mod its boundary. This is
equivalent to Th(NZX), the Thom space of the normal bundle of Z in X.

Example 3.1.
Let Z = Spec (k) and X ∈ Smk, then let U be a Zariski open neighborhood of z. Then
U/U − Z ' Pn/Pn−1 since the Thom space is just a vector space here. So this produces a
sphere around z.

Example 3.2.
Replace Spec k with Spec (k(z)), this yields Pnk(z)/P

n−1
k(z) ' Pn/Pn−1 ∧ (Spec (k(z)

∐
{pt}).

(DZG) Note: video says “disjoint basepoint” here and uses different notation, so what I’ve
written may not be correct.

Compare to manifolds: if z ∈ U a small ball, then Σ∂U ' U/U − z. So if we wanted to look at
maps between boundaries, we could suspend and take degrees.

3.6 The Grothendieck-Witt Group
Recall that the target of the degree map was GW (k); we’ll also talk a bit about Milnor K-theory
KM
∗ (k).
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3.7 Milnor K-Theory

From yesterday, we defined GW (k) as the isomorphism classes of symmetric nondegenerate bilinear
forms over k, which had a generators

〈a〉 , a ∈ k×

〈a〉 : k2 −→ k

(x, y) 7→ axy.

and relations

〈
ab2
〉

= 〈a〉 (b 6= 0)

〈a〉 ⊗ 〈b〉 = 〈ab〉
〈a〉+ 〈b〉 = 〈a+ b〉+ 〈ab(a+ b)〉 (a+ b 6= 0)

which follows because we’re in k×/(k×)2. Note that the last relation is very important.

These relations imply a special relation concerning a hyperbolic form, which is given by

h := 〈1〉+ 〈−1〉 = 〈a〉+ 〈−a〉

for any a.

We’ll look at invariants on bilinear forms – for many common fields, there are algorithms to determine
equality of sums of generators, and thus in GW there are many tools to work with. Some of these
tools are invariants arising from the Milnor conjecture, which involves this group and is a huge
achievement in A1 homotopy theory.

We have a rank homomorphism:

rank : GW (k) −→ Z
(B : V 2 −→ k) 7→ dimV

and the fundamental ideal is defined as I := ker rank. This yields a filtration

GW (k) ⊇ I ⊇ I2 ⊇ · · ·

where the associated graded are etale cohomology groups and (by the Milnor conjecture) Milnor
K-theory groups.

3.7 Milnor K-Theory
We define Milnor K-theory as

KM
i :=

⊕∞
i=1(k×)⊗i

〈a⊗ (1− a)〉

which is tensor algebra on k×, modded out by the Steinberg relation.
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3.8 Grothendieck-Witt Group Invariants

Theorem 3.2(The Milnor Conjecture (Voevodsky)).
There is a map

KM
n −→ In/In+1

n⊗
i=1

ai 7→
n∏
i=1

(〈1〉 − 〈ai〉) .

We can also look at the Kummer map coming from the short exact sequence

1 −→ Z/2Z −→ k× −→ k× −→ 1

which lets us make a map

k× −→ H1
et(k; Z/2Z)

where we can use that fact that k× ∼= KM
1 to land in Milnor K-theory,

KM
1 −→ H1

et(k; Z/2Z),

where we can use the cup product to lift this to a map to the nth graded piece

KM
n −→ Hn

et(k; Z/2Z).

Fitting all of this together, we get maps

sIn/In+1 ← KM
n −→ Hn

et(k; Z/2Z),

and the Milnor conjecture states that these are isomorphisms.

In other words, the associated graded of this filtration is the etale cohomology or Milnor K-theory,
and if you have a field for which the nth etale cohomology in Z/2Z coefficients doesn’t vanish, then
there is a nontrivial piece in the associated graded.

3.8 Grothendieck-Witt Group Invariants
This lets us view maps In −→ In/In+1 as invariants on GW (k).

• For n = 0, this is the rank homomorphism.
• For n = 1 we get the discriminant, which is the determinant of the linear map associated to
the bilinear form obtained after choosing a basis.
• For n = 2 this is the Hasse-Witt invariant (see written notes)
• For n = 3 this is the Arason invariant

For higher n these invariants don’t have names, but for various fields, the lower degrees form a
complete invariant – for example, for finite fields, one needs only check n = 0, 1, while Q requires
n = 0, 1, 2.

The Grothendieck-Witt group is the 0th graded piece of Milnor-Witt K-theory, MMW
∗ (k), which is

also a homotopy group of spheres in A1 homotopy theory (due to Hopkins and Morel).

This group has generators
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3.9 Degree Theorem

〈a〉 , a ∈ k×, deg a = 1
η, deg η = −1

and relations

η 〈a〉 = 〈a〉 η
〈a〉 〈1− a〉 = 0

〈ab〉 = 〈a〉+ 〈b〉+ η 〈a〉 〈b〉
ηh = 0

where h is the same as earlier, but since it’s in the wrong group, we need to define this using the
isomorphism

GW (k) ∼= KMW
0 (k)

〈a〉 7→ 1 + n 〈a〉
h := 〈1〉+ 〈−1〉 7→ 2 + η 〈−1〉 := h.

3.9 Degree Theorem
This theorem says that η corresponds to a Hopf map.

Theorem 3.3(Morel).

[(S1)∧n ∧ (Gm)∧j , (S1)∧n ∧ (Gm)∧r] ∼= KMW
r−j

where the square brackets correspond to homotopy classes of maps.
In particular, when j = r = n, we obtain

[Pn/Pn−1, Pn/Pn−1] ∼= GW (k)

This is a fantastic theorem, which we will see again later when doing oriented Chow groups.

A nice consequence is that if we let k = R, the degrees behave nicely, characterized by the
commutativity of this diagram:

[S2n, S2n] C-points←−−−−− [Pn/Pn−1, Pn/Pn−1] R-points−−−−−→ [Sn, Sn]ydeg
ydeg

ydeg

Z ←−−−−
rank

GW (k) −−−−−→
signature

Z
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3.10 Producing a Sheaf

where the edge degree maps are just the topological degree of maps between spheres and the middle
is the A1 degree. The signature is the usual difference in ±1s occurring after diagonalization. Thus
GW (k) lets us simultaneously read off the real and complex degrees of maps between schemes over
R.

So these homotopy groups are actually homotopy sheaves (not just global sections of sheaves), where
we can form a sheaf by taking smash with U+ and sheafifying. Thus GW (k),KMW

∗ (k), and KM
∗ (k)

are all global sections of sheaves.

DZG: Not sure what U+ is here.

3.10 Producing a Sheaf
There is a procedure in Morel’s book for producing an unramified sheaf KMW

∗ from the values on
fields, i.e. KMW

∗ (E) for some E ⊃ k of finite type. It proceeds as follows:

We want to know what the sections are on some scheme Y , so we look at its function field and
check KMW

∗ on it to see which sections are defined over all of Y and not over the generic point.
This produces the additional data of boundary/residue maps that determine when sections extend
globally.

So let V : E −→ Z
⋃
{∞} be a valuation and OV =

{
e ∈ E

∣∣∣ V (e) ≥ 0
}
and choose a uniformizer

π such that v(π) = 1. Then form the residue field k(V ) := OV / 〈π〉. Then this residue map plus the
sections will allow us to define a sheaf, so define the residue homomorphism

∂πV : KMW
∗ (E) −→ KMW

∗ (k(V ))[−1]
〈π〉 〈a1〉 · · · 〈an〉 7→ 〈a1〉 · · · 〈an〉
〈a1〉 · · · 〈an〉 7→ 0

〈η〉 7→ 0

where ai ∈ O×V and ai is the reduction.

Note that it is true that ∂πV η = η∂πV , and this is part of what uniquely defines this map.
However, we can’t have η 7→ η, because this does not decrease the degree by 1.

So then the sections on O are given by
KMW
∗ (OV ) := ker ∂πV

and there is a procedure for making a sheaf from this denoted KMW
∗ .

The fact this is a stable homotopy sheaf provides some transfers (seen last time), which we’ll start
with next time.

4 Lecture 3: Transfers
4.1 Defining Some Transfers
Recall that we have the sheaves KMW

∗ , GW , and the sheaf property means that an inclusion K ↪→ L
induces a map Spec (L) −→ Spec (K). We can take GW (Spec (L) −→ Spec (K)), and this is
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4.2 Bilinear Forms on Chow Groups

exactly the restriction/base change given by · ⊗k L of bilinear forms.

We also saw that these were stable homotopy sheaves, so there should be transfers, and we want to
use them for field extensions. Let K ⊂ L be a finite extension of finite-type schemes over k. This
leads to transfer maps

TrL/K : GW (K) −→ GW (L).

There is also a geometric transfer (which is the prettiest!) which we’ll define momentarily, given
by with multiplication by one of those brackets to define a cohomological transfer. The geometric
transfer will depend on a sequence of generators, while, while this choice can be removed for the
cohomological transfer. If you use the twisting data you can get an absolute transfer.

In the case where K ⊂ L is separable, there is a canonical way to explicitly untwist, and the absolute
and cohomological transfers agree. For these two, we took

Tr(B : V 2 −→ L) = V 2 B−→ L
Tr
Wk−−−→

where we now view V as a k-vector space, and TrWk is the trace from Galois theory, the sum of the
Galois conjugates.

We’ll show that we have this structure for the geometric transfer. If L = K[z]/ 〈f〉, so we’ve chosen
some generator, then we get an induced map Spec (L) z

↪→ P1
K . Since this is a closed immersion

corresponding to z, we can form a backwards map

P1
K −→

P1
K

P1
K − {z}

' P1
L

by crushing everything but z, where the last equivalence was seen in the previous lecture. But now
we can take KMW

1 (P1
K −→ P1

L), which is a map

Trgeom
L/K : GW (L) −→ GW (K)

So we have some transfers.

4.2 Bilinear Forms on Chow Groups
The finale of this morning was going to be adding bilinear forms to Chow groups for the purposes of
having a tool in enumerative geometry. So let X ∈ Smk and X(i) codimension i reduced, irreducible
subschemes of X. Then

CH i(X) =
⊕

X(i) Z
∼

where ∼ is rational equivalence, the equivalence relation generated by taking subvarieties of V ⊂
X × P1 and equating the fibers and the endpoints V{1} ∼ V{0}, i.e. V

⋂
(X × {1}) ∼ V

⋂
(X × {0}).

These are useful in enumerative geometry – there are Chern classes, pushforwards, pullbacks, a ring
structure, etc. This ring structure lets us do intersection theory, providing some machinery to help
with enumerative questions.
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4.3 Twisted Chow

The ith Chow group, in addition to being a motivic homology group, also has a nice formula due to
Bloch that applies in the case of smooth schemes: CH i(X) ∼= H i(X;KM

i ) where the RHS is the
Nisnevich cohomology of X with coefficients in Milnor K-theory.

Oriented Chow groups (AKA Chow-Witt groups) which are the original Chow groups together with
a bilinear form. By Borge and Morel, motivated by the Bloch formula above, these can be defined as

C̃H i(X) := H i(X;KMW
i ).

This can be computed by a complex (as in Morel’s book):

· · · −→
⊕

z∈X(ii1)

KMW
1 (K(z), det

k(z)
TzX) −→

⊕
z∈X(i)

GW (K(z), det
k(z)

TzX)

−→
⊕

z∈X(i+1)

KMW
−1 (K(z), det

k(z)
TzX) −→ · · ·

where k(z) is the function field, and since z has a generic point, we can take the highest wedge
power of the tangent space of X at z to yield the determinant term, which serves as an added
twist. This explains why elements of the oriented Chow are formal combinations of codimension i
subvarieties z ∈ X(i) and a bilinear form over k(z), B ∈ GW (k(z)).

There’s structure here – Fasel developed ring structure and pushforwards, while in the context of
enumerative geometry, Mark Levine works with these. All in all, we have pullbacks, pushforwards,
a noncommutative ring structure, and we can twist these groups as well.

4.3 Twisted Chow
First we’ll define the twists appearing in the complex above, and then we can define how to do
twisted Chow so we can do pushforwards.

If E is a field of finite type over k, then KMW
i (E; Λ) (“twisted by Λ”) where Λ is a 1-dimensional

E-vector space can be defined as

KMW
i (E) ⊗

Z[E×]
Z[Λ− {0}]

since E× acts of the LHS due to the bracket E in the Grothendieck-Witt group, and the RHS is
possible because we can act on the nonzero elements of the vector space.

We can also twist by line bundles L −→ X, leading to a definition of oriented Chow groups
twisted by local coefficients via C̃H i(X;L) := H i(X;KMW

i (L)) where we just take K-Milnor-
Witt and twist by L.

For any proper f : X −→ Y where dimY − dimX = r, then we have a pushforward map

f∗ : C̃H i(X,ωX/k ⊗ f∗L) −→ C̃H i−r(Y, ωY/k ⊗ L).

where ωX/K is the canonical line bundle of X over k given by detTX, the determinant of the
tangent bundle of X, and f∗L is the pullback of any line bundle from f .

Note that the bilinear form here acts like an orientation (which is exciting!), hence the name.
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4.4 Degree by Local Degree

4.4 Degree by Local Degree
Recall from Algebraic Topology that if we have a smooth map f : Sn −→ Sn, then there is a notion
of degree given picking regular values p ∈ Sn, so the preimage consists of finitely many points
f−1(p) = {q1, · · · , qn}, and we define deg f =

∑
deg
qi
f to be the sum of local degrees.

There is a formula for computing the degree from differential topology, given by choosing coordinates
x1, · · · , xn near qi and y1, · · · , yn near p which are compatible with orientations. Then f : Rn −→ Rn,
so we can form its Jacobian Jac(f) = det J where that matrix J is given by (J)i,j = ∂fi

∂xj
. We then

have

deg
qi
f =

{
1, Jac(f) > 0
−1, Jac(f) < 0

.

In A1 algebraic topology, instead of just remembering the sign (like the signature), the idea of
Lannes-Morel is to remember the entirety of Jac(f). Take f : P1 −→ P1 over a field k, then let
p ∈ P1(k) be a k-rational point so that f−1(p) = {q1, · · · , qn}. We can then define

degA1(f) =
∑
〈Jac
qi
f〉 ∈ GW (k)

which doesn’t depend on p. We then make an analogous definition for higher dimensions.

Proposition 4.1.
The global degree is a sum of local degrees.

Let f : Pn −→ Pn be finite such that f−1(An) = An for some chosen copy of An ⊂ Pn. This yields
an induced map f : Pn/Pn−1 −→ Pn/Pn−1. We then define the global degree by picking some
p ∈ An and setting

degA1(f) =
∑

q∈f−1(p)
deg
q
A1(f)

where the local degree can be define using balls (as in the first lecture), and we let deg
q
A1(f) be the

degree of the composite map

Pn

Pn−1 '
U

U − {q}
−→ An

An − {p}
' Th(NpAn) ' Pn

Pn−1

where U is an open set chosen such that the preimage of p only contains q, and Th(NpAn) is the
Thom space of the normal bundle (here, the tangent bundle) and the last equality follows from the
purity theorem and the fact that everything is k-rational (i.e. k(q) = k).

This can also be made to work at a non-rational point, using the Hatcher-style proof, of taking a
collapsing map to yield the composite

Pn

Pn−1 −→
Pn

Pn−1 − {q}
−→ U

U − {q}
−→ An

An − {p}
' Pn

Pn−1 .
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4.4 Degree by Local Degree

This yields a notion of local degree in terms of global degree, by taking boundaries of balls, and we
have the following facts:

• If f is etale at q, and k ⊆ k(q) is separable then

deg
q

A1(f) = Trk(q)/k〈Jac(q)〉

– Depending on what you mean by transfer, the hypothesis of separability can be dropped,
but it’s needed here to take the composition with the Galois theory trace.

– We could use this to compute the degree, but we are missing something

Question: what happens if Jac(f) = 0? Answer: The Eisenbud-Levine-Khimshiashvili signature
formula, which says that if f : Rn −→ Rn where 0 7→ 0 is an isolated zero, then deg

0
(f) =

signature(ωEKL) which is a bilinear quadratic form on

Q := R[x1, · · · , xn]0
〈f1, · · · , fn〉

where the numerator is localized at zero. Since the zero was isolated in its fiber, Q is a finite-
dimensional R-vector space, and Jac(f) ∈ Q (which may lie in the maximal ideal 〈x1, · · · , xn〉). So
we can pick any R-linear η : Q −→ R such that η(Jac(f)) = dimQ. This allows us to define

ωEKL : Q2 −→ R
(a, b) 7→ η(ab)..

A question Eisenbud was whether or not this whole form could be used as a degree over an arbitrary
field k, not just its signature. So does it have an interpretation in algebraic topology? The answer
is that it does, as a local degree in A1 homotopy theory (which wasn’t around at the time).

Theorem 4.2(Kass-Wickelgren).

deg
0

A1(f) = ωEKL,

constructed in the same way.

This works for any rational point, and one of the projects is to remove the hypothesis that k(x) = k.

Example: Let f(x) = x2, and consider ωEKL for this form. Form Q = k[x]/
〈
x2
〉
, where we don’t

need to localize at zero since 0 is the only preimage of 0. Then Jac(f) = 2x. Note that Q has a
basis {1, x}, and so we can choose

η : k[x]/
〈
x2
〉
−→ k

η(2x) = 2
η(1) = 0.
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4.5 A1 Milnor Numbers

where we claim can send 1 wherever we want without altering the isomorphism class of ωEKL. We
do this by forming the Gram matrix

1 x

1
x

[
0 1
1 0

]

where the 1s appear since we require x 7→ 1, the bottom-right 0 because x2 in the ring, and no
matter what the top-left corner is, we can change basis by adding a multiple of x to it.

Thus we can diagonalize this matrix to yield ωEKL = 〈1〉+ 〈−1〉. Note that we needed to assume
char k does not divide dimQ, otherwise we could have used a distinguished socle element instead in
place of the Jacobian.

So now we have a way to concretely calculate degrees of maps Pn/Pn−1	, so here’s an enumerative
application.

4.5 A1 Milnor Numbers

Joint with Jesse Kass.

Definition 4.2.1 (Nodes).
A point p on a scheme X is a node if after base changing to the separable closure ks and
looking at all of the preimages, the completed local ring

OX,p ∼= ks[[x1, · · · , xn]]/
〈∑

x2
i + o(x3

i )
〉
,

where o(x3
i ) just denotes higher order terms.

Let X = {f = 0} be a hypersurface, which is a scheme determined by a single equation, then if we
perturb the equation near a complicated singularity, that singularity would bifurcate into nodes. So
let p ∈ X be a singularity; as X is perturbed within a family P , p bifurcates into nodes.

More specifically, for any a1, · · · , an, we have a family of varieties/hypersurfaces given by

f(x1, · · ·xn) +
∑

aixi = t

parameterized by t. One definition of the Milnor number is that in any such family, it counts the
number of nodes.

Let k = C, then a result of Milnor says that for any sufficiently small a1, · · · , an, the family P
contains µ(p) nodes, where µ denotes taking the Milnor number.

To find nodes, one can look at the gradient and see where all of the coefficients of the linear terms
vanish. What remains is o(x2

i ), so we’re looking for zeros of the gradient, which requires looking
at the inverse image of the gradient, so we’re picking up the degree of the gradient. This gives us
another definition,

µ(p) = deg(gradf)(p).
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4.5 A1 Milnor Numbers

However, when k 6= C and generally not algebraically closed, nodes have interesting information,
including arithmetic data.

For example, consider x2 + y2 and x2 − y2. The first carves out just the origin, the latter, two
diagonal lines.

The LHS is a non-split node, meaning the tangent is not defined over k, while the RHS is a split
node. So we can use the A1 degree in place of the topological degree, since we want to count the
zeros of the gradient, and it will naturally pick up information about the node.

Definition 4.2.2 (Type of a Node).
The type of a node p = {f = 0} is given by

Type(p) = deg
p

A1(gradf) ∈ GW (k).

Example 4.1.
Choose a preimage of p after base change to k(p), suppose the node is cut out by the
f =

∑
x2
i + o(x3

i ). Then we have the local ring ÔX.p = k[[p]]/ 〈f〉. Then Type(p) =
Trk(p)/k 〈2na1 · · · an〉, where k(p) is always a separable extension of k.

Then Type(x2 + ay2) = 〈a〉. This picks up the two tangent directions in the field of definition,
and when it’s not rational, it picks up the trace from k with a 2-tangent direction. So this
contains geometric/arithmetic information about both the node and its tangent directions.

Definition 4.2.3 (Milnor Number).
For p a singularity on a hypersurface, we can define the Milnor number

µA
1(p) := deg

p
(gradf).

Theorem 4.3(Kass-Wickelgren).
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4.5 A1 Milnor Numbers

It then follows that for a generic a1, · · · , an, for a singularity p, we have∑
x∈a family of nodes

Type(x) = µA
1(p) ∈ GW (k),

which is a fixed element.

4.5.1 Example of Kass-Wickelgren Theorem

Let f(x, y) = y2− x3, supposing char (k) 6= 2, 3 and consider computing the A1 Milnor number. We
compute grad(f) = (−3x2, 2y). We can choose p = 0 as a singularity, then

µA
1(0) = deg

0
(gradf)

= deg
0

(x 7→ −3x2)deg
0

(y 7→ 2y), .

since the two variables being split apart implies that we can decompose gradf into the smash
product of two maps into spheres. We know that the latter map is etale, so its degree is 〈2〉. For
the former, we can use the prior computation for x 7→ x2 and just post-compose with x 7→ 3x, so we
obtain

µA
1(0) = 〈3〉 (〈1〉+ 〈−1〉) 〈2〉

= 〈−6〉+ 〈6〉
= 〈1〉+ 〈−1〉
= h,

the hyperbolic form from earlier.

Alternatively, take a family y2 = x3 + ax+ t. We then have two situations, depending on whether
or not a = 0:
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The bottom represents the t line, where the LHS shows a cusp at t = 0 and otherwise some general
fibers. For the RHS, there are nodes exactly when x3 + ax+ t has a double root, which happens
exactly when this polynomial’ discriminant is zero, which occurs at −27t2 − 4t. In particular, t is
degree 2, so there are two nodal fibers (which agrees with Milnor’s theorem), and moreover if we
add up the types we must get h.

So for example, over F5, we 〈1〉 = 〈−1〉, so in a family, it is not possible to have one split and one
non-split rational node.

For F7, this is reverse, and you can’t have 2 split or 2 non-split rational nodes.

Moral of the story: this obstructs certain kinds of arithmetic behavior within these families!

5 Lecture 4: The Euler Class
Start with the version from Algebraic Topology. Let X be be an R-manifold of dimension d and
V � X be a rank r vector bundle with fibers Vx for each x ∈ X.

Recall the definition of the Thom space of V ,

Th(V ) ∼= P(V ⊕O)/P(V ) ' V

V −X

which can be defined on a fiber

Th(Vx) ∼= P(V ⊕O)/P(Vx) ' Sr

where O is a trivial bundle and X denotes the zero section.

Definition 5.0.1 (Orientation of a Bundle).
A bundle V is oriented by a Thom class u ∈ Hr(Th(V );Z) if each restriction Hr(Th(Vx);Z)
yields a generator.

Example 5.1.
This occurs when all transitions functions have positive determinant. Let U be an open cover
of X, then V is described by clutching (transition) functions

{
ϕ|U⋂W

∣∣∣ U,W ∈ U} where det ϕ|U⋂W > 0

if and only if detV = L⊗2 for some line bundle L � X. Note that we can do this because
if the determinant is greater than zero, we can take a square root, and if we take a positive
square root the cocycle condition is still satisfied.
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5.1 A1 Algebraic Topology

Definition 5.0.2 (Orientation of Spaces).
A space X is oriented iff its tangent space TX is oriented.

Assume X is a compact manifold and d = r, then by Poincare duality we obtain an isomorphism
Hr(X;Z) ∼= Z, and so e(V ) ∈ Z is an integer.

We can compute the Euler class in the following way: choose a section σ with only isolated zeros,
then

e(V ) =
∑

x∈X
∣∣∣ σ(x) 6=0

degx(σ)

where we sum the local degrees, and σ is locally identified with a function

σ : Rd −→ Rr

coordinates on X 7→ local trivialization

by choosing local coordinates and a local trivialization compatible with the standard orientations of
the spheres in the domain and codomain.

Note that if we composed the trivialization with an element of GL(U) with negative determinant,
that would change the local degree so this definition wouldn’t make sense for relative orientations –
however, if we change coordinates for Rd and Rr simultaneously, it will.

Definition 5.0.3 (Relatively Oreinted Bundles).
The bundle V � X is relatively oriented iff hom(detTX,detV ) is oriented.

We know what it means for such a homomorphism to be positive, and this won’t change the value
of the local index.

Since V has an orientation sheaf, let O(V ) be a local system on X with

O(V )x = Hr(Th(Vx);Z).

We can then use the Thom isomorphism to get a Thom class, so we have e(V ) ∈ Hr(X;O(−V ))
which comes from a canonical map. So when V −→ X is relatively oriented, we again have e(V ) ∈ Z.

5.1 A1 Algebraic Topology
Let X ∈ Smk be a smooth scheme of dimension d and V � X an algebraic bundle of rank r.

Definition 5.0.4 (Oriented Algebraic Bundles).
V is oriented by the data L� X a line bundle and an isomorphism detV ∼= L⊗2.

Definition 5.0.5 (Relatively Oriented Algebraic Bundles).
V is relatively oriented if hom(detTX,detV ) is oriented.
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5.2 Computing Euler Classes for Relatively Orientable Bundles

Example 5.2.
Consider both X = Pn and X = Gr(m,n) be the Grassmannian parametrizing subspaces
Pm ≤ Pn. Then detTX = O(n+ 1), the dual of the tautological tensored n+ 1 times – for
the Grassmannian, you put it in the Plucker embedding and pull back the O(1).

∴ X is orientable ⇐⇒ n is odd.

This follows because we can take O(n+ 1
2 ) and choose the morphism required in the definition

above.

Example 5.3.
O(n)� P1 is orientable if and only if it is relatively orientable if and only if n is even.

Example 5.4.
Take O(d)⊕O(e) −→ P2. Since 2 + 1 = 3 is odd, this is orientable if and only if d+ e is odd.

Note: S. McKean uses this to make an enriched Bezout’s theorem for the intersection of plane
curves of degree d and e.

5.2 Computing Euler Classes for Relatively Orientable Bundles

Joint with Jesse Kass

In addition to the prior assumptions, let σ be a section of V with only isolated zeros and use the
same definition of e(V ), which will land in the Grothendieck-Witt group GW (k) instead of Z.

what remains is to define the local degree. We’ll proceed in the same way by finding a function,
which will give us local coordinates and a local trivialization.

Definition 5.0.6 (Nisnevich Coordinates).
The Nisnevich coordinates near x are given by

ϕ : U −→ Ad

which induces an isomorphism on the function field, so the induced extension of residue fields
k(ϕ(p)) ↪→ k(p) is an isomorphism.

Remarks:

• Such coordinates determine a distinguished section of detTX(U)
• A local trivialization ϕ|U −→ O

r determines a distinguished section of detV (U)

And so we can make the following definition:
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5.3 Relations to Chow Groups

Definition 5.0.7 (Compatibility of Coordinates and Trivialization).
Local coordinates and a local trivialization are compatible if for these distinguished sections,
we have

hom(detTX(U), V (U)) ∼= L⊗2.

So we can get compatibility by varying the trivialization until we get a square (no problem).
Nisnevich coordinates will always exist when k(p) is a separable extension of k, or the dimension is
1 (by Galois theory).

So suppose we have local coordinates φ and a local trivialization π that are compatible. If φ : U ↪→ Ad
is an open immersion, then our section σ is a function can be identified by pulling back σ : Ad −→ Ar
and defining degp(σ) := degφ(p)(σ).

Note that we don’t actually need the immersion condition here, since the A1 local degree is finitely
determined, and so modifying the function by something in a high enough power of the maximal
ideal doesn’t change the degree. So if the φ given by Nisnevich coordinates is an etale map where
the local rings aren’t isomorphic, then σ could fail to be pulled back from Ad. However, we could
just add something from a really high power of the maximal ideal, and it can be shown that σ is
pulled back from Ad. These choices don’t affect the outcome, so the assumption is not necessary by
“finite determinacy of degp”.

Need to show that it is well-defined (i.e. it doesn’t depend on choice of section), which it is
under some conditions.

5.3 Relations to Chow Groups
Other perspectives:

Barge Morel has one that lands in the oriented Chow, e(v) ∈ C̃hr(X,det(−V )).

Note that you can use V or −V here, since the action of GW has trivial squares, and the
definition of the twist for oriented chow groups means that changing the twist by the square of
a bundle doesn’t effect the oriented chow groups.

It is defined as follows:

There is a distinguished element 〈1〉 ∈ C̃h0(X) which is determined by a complex

· · · −→
⊕

z∈X(0)

GW (k(Z),detTzX) −→
⊕

z∈X(−1)

GW (k(Z),detTzX)

where X(0) are reduced irreducible subschemes of X, and the RHS disappears because it’s the
generic point.

In Algebraic Topology, the definition of the Thom class involves a canonical map Th(−V ) −→ X,
making the class land in H0(Th(−V ) which under the Thom isomorphism gives something in Hr

with a twist. An analog in this setting is the following pushforward.

Let σ denote the zero section of V � X, then there is a pushforward map

σ∗ : C̃h0(X) −→ C̃hr(V,det p∗V )
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5.4 Example Computations

where the source with ordinarily have a twist by the canonical, but when pulled back it will disappear.

Note: the difference between the canonical bundle of V and the twist we had to do to get rid of
X is like the difference between TV and TX, yielding the determinant appearing on the RHS.

The map p also yields an isomorphism

p∗ : C̃hr(X,detV ) −→ C̃hr(V,det p∗V )

and so we define

e(V ) := (p∗)−1σ∗(〈1〉).

If V � X is relatively oriented, there is a map X π−→ Spec (k) and so π∗e(V ) ∈ GW (k).

Other perspectives

• There is a different perspective of Morel and Mark Levine, giving the Euler class as the
principal obstruction to having a nonvanishing section. This is known to be equal to the one
given above, up to a unit (〈a〉)
• A six functor formalism
• Mike Hopkins
• Raxit and Levine?

5.4 Example Computations
Example: Let n be even, and V = OP1(n) which can be thought of as meromorphic functions that
have a pole of order at most n at some point, say zero. Then in local coordinates, the function 1
looks like xn, and so e(V ) = deg0 x

n = n

2h = n

2 (〈1〉+ 〈−1〉).

Ordinary vector bundles in Algebraic Topology for odd-dimensional vector bundles are 2-torsion.
Moreover, by a result of Levine, since this is a line bundle we know that the Euler class will be
a multiple of h. A similar argument works here?

Example: How many lines meet 4 general lines in P3? Follows joint work with Srinivasan, also in
Schubert Calculus paper (Mathies Wendt)

Lines in P3 are parameterized by Gr(1, 3), which is equivalent to W ⊆ k⊕4, dimW = 2. Let - Li be
4 lines, no two of which intersect - ei be a basis of k4 - φi be the corresponding dual basis

where L1 = P(ke3 ⊕ ke4) = {φ1 = φ2 = 0}. Lets find a condition on bundles for lines that intersect
L1.

Let L = P(kẽ3 ⊕ kẽ4), the span of some two linearly independent vectors. If we wrote these out in
terms of ei, we’d need to find a combination where the coefficients of e1, e2 vanish, i.e. there needs
to be a linear dependence in the part of their basis expansion involving these two elements. We
thus get the condition

L
⋂
L1 ⇐⇒ (φ1 ∧ φ2)(ẽ3 ∧ ẽ4) = 0

So we look at the line bundle S∨ ∧ S∨ � Gr(1, 3), where the fiber above a dimension 2 subspace W
is given by (S∨ ∧ S∨)PW = W∨ ∧W∨.
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5.4 Example Computations

Then {φ1, φ2} determine a section σ1 of S∨∧S∨ by σ1(PW ) = φ1|W ∧ φ2|W , where lines intersection
L1 correspond exactly to zeros of σ1.

We can do the same thing for the other Li and combine them to get a section of V := ⊕4
i=1S

∨ ∧ S∨,
whose zeros are the lines we’re looking for.

Is this bundle relatively orientable? detTX = O(4),detV = (S∨ ∧ S∨)⊗4, which are both tensor
squares, so yes.

Following the recipe, we need to identify σ with a function. To compute degPW (σ), choose local
coordinates on Gr(1, 3). So we need to choose dimension 2 subspaces parameterized by A4, so we’ll
pick the lines which intersect {φ3 = φ4 = 0}, yielding a new basis

ẽ1 = e1

ẽ2 = e2

ẽ3 = xe1 + ye2 + e3

ẽ4 = x′e1 + y′e2 + e4

We then have an open subset

U = Spec (k[x, y, x′, y′]) ↪→ Gr(1, 3)
(x, y, x′, y′) 7→ P(kẽ3 + kẽ4).

so we have some local coordinates. Let φ̃i be the dual basis.

Next we choose a local trivialization, where S∨ ∧ S∨ can be locally trivialized by φ̃3 ∧ φ̃4 which are
compatible with some relative orientation.

The expression for the function σ will depend on our choice of line, and instead of notating all of
them, just assume that L1 = P(ke3 ⊕ ke4). We then get σ = (φ1 ∧ φ2, ?, ?, ?) where we just didn’t
notate the other components. So what is this first component in terms of x′, y′? This amounts to
finding the coordinate of φ̃3 ∧ φ̃4 is in φ1 ∧ φ2, which is just a linear algebra problem.

We want to find the coefficient c in

(φ1 ∧ φ2)|kẽ3⊕kẽ4
= c(φ̃3 ∧ φ̃4)

How many ẽ3 are in φ1? We can evaluate φ1(ẽ3) to get how many φ̃3s we need, but that’s just x. So
the RHS evaluates to (xφ̃3 ∧ yφ̃4) + (x′φ̃3 ∧ y′φ̃4), and we obtain c = xy′ − yx′. We can thus write

σ : A4 −→ A4

σ(x, y, x′, y′) = (xy′ − yx′, ?, ?, ?).

Now we can compute the local degree by taking the Jacobian and taking the determinant, but what
AG/Arithmetic information is contained in this huge polynomial in x, y, x′, y′s? Is there an AG
interpretation of this local degree degP (σ), where P = L is a point on the Grassmannian?
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5.5 Where Things Are Going

Well L = PW intersects Li, so we have 4 points on L ∼= P1
k(L), and therefore we have a cross-ratio λ.

We can get another cross-ratio by looking at planes in P3 containing L, i.e. dimension 3 subspaces
V containing W , so we have

W ⊆ V ⊆ k(L)4

where dimV = 1, so each plane is a P1
k(L). We get 4 planes containing L, namely the 4 planes

spanned by each pair (L,Li). This provides a second cross-ratio µ

Although there was choice, since our section was determined not by L but rather by the zero set of
some functions, normalizing things correctly yields

degL(σ) = Trk(L)/k 〈λ− µ〉 .

We thus obtain a theorem:

Theorem 5.1.

∑
L

∣∣∣ L⋂Li 6=∅

Trk(L)/k 〈λ− µ〉 = 〈1〉+ 〈−1〉 = h.

5.5 Where Things Are Going
• Gromov-Witten invariants with Jake and Jesse
• Welschinger invariants, Mark Levine

These produce more than just the 1s appearing in h, and have ties to things like modular forms.
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