Trisections and Flat Surface Bundles

GOATS 2 June 6, 2020

Marla Williams

Main Results

Theorem (W. 2018) There is a ((2g+1)(2h+1)+1;2g+2h) trisection of $\Sigma_g \times \Sigma_h$

Theorem (W. 2018) The trisection genus of $\Sigma_g imes \Sigma_h$ is (2g+1)(2h+1)+1

• There is an algorithm for drawing a trisection diagram of $\Sigma_g \times \Sigma_h$ that realizes this bound

Theorem (W. 2020) If X is a flat Σ_h -bundle over Σ_g , then there is a ((2g+1)(2h+1)+1;2g+2h) trisection of X

Trisections

- Trisection: decomposes a <u>4-</u>
 manifold into three simple pieces (4-d 1-handlebodies)
- Existence: Gay/Kirby 2012
 - smooth
 - closed
 - orientable
 - connected

Trisections

 Trisection: decomposes a 4manifold into three simple pieces (handlebodies)

• Existence: Gay/Kirby 2012

• Diagrams:

Past Work on Trisections

- Existence: smooth, orientable, closed (Gay/Kirby 2012); smooth, orientable, compact (Castro/Gay/Pinzón 2016, 2018)
- Genus 2 trisections standard (Meier/Zupan 2014)
- Lefschetz fibrations (Gay 2015, Castro/Ozbagci 2017, Baykur/ Saeki 2017)
- Diagrams: 3-manifold bundles over S^1 (Koenig 2017)
- Diagrams: spun 4-manifolds (Meier 2017)

Theorem (W. 2018) There is a ((2g+1)(2h+1)+1;2g+2h) trisection of $\Sigma_g \times \Sigma_h$

- X_i has genus 2g+2h as a 4-d handlebody; $X_1\cap X_2\cap X_3$ is a genus (2g+1)(2h+1)+1 surface
- Decompose Σ_g into three (4g+2)-gons B_1,B_2,B_3
 - pairwise intersect at $2g+1\,\mathrm{edges}$
 - triply intersect at 4g+2 vertices
- Take three disjoint disks N_1, N_2, N_3 in Σ_h
 - define $u_i = B_i imes N_i$, for i=1,2,3
- With $p: \Sigma_g \times \Sigma_h \to \Sigma_g$ the natural projection map, define

$$X_i = \overline{p^{-1}(B_i) \setminus \nu_i} \cup \nu_{i+1} = (B_i \times \overline{\Sigma_h \setminus N_i}) \cup (B_{i+1} \times N_{i+1})$$

•
$$\Sigma_g = T^2$$

- g = 1
- three hexagons
- trisection surface is roughly a B_{α} neighborhood of this 1-skeleton
- replace vertices by $\begin{array}{c} \Sigma_h \setminus (\cup_{i=1}^3 N_i) \\ \text{and edges by} \\ B_\delta \times \partial N_i \end{array}$

Diagram Construction

Example: $S^2 \times T^2 = \Sigma_g \times \Sigma_h$

•
$$(2g+1)(2h+1)+1=(1)(3)+1=4$$

Diagram Construction

Example: $S^2 \times T^2 = \Sigma_g \times \Sigma_h$

•
$$(2g+1)(2h+1)+1=(1)(3)+1=4$$

Diagram Construction

Example: $S^2 \times T^2 = \Sigma_g \times \Sigma_h$

•
$$(2g+1)(2h+1)+1=(1)(3)+1=4$$

- We need to start placing curves
 - build curves from arcs in Σ_h
- We will use the structure of Σ as the union of:
 - {vertices} $\times \Sigma_h \setminus (\cup_{i=1}^3 N_i)$
 - $B_{\alpha} \times \partial N_1$
 - $-B_{\beta} \times \partial N_2$
 - $-B_{\gamma} \times \partial N_3$

Curve Algorithm Example: $S^2 \times T^2$

- Build curves from arcs:
- $\cup \omega_{\alpha}^{\imath}$ cut $\Sigma_h \setminus \cup N_i$ into a pair of pants; endpoints are in ∂N_1
- ullet \mathcal{C}_lpha has endpoints in ∂N_1 and ∂N_2 . Connect things up.

Curve Algorithm Example: $S^2 \times T^2$

Nontrivial Bundles: Flatness

- When the bundle incorporates twisting, some of the arcs we used will be replaced by their image under a diffeomorphism of Σ_h
- For the algorithm to work, we need the bundle to be flat:
 - constructed from $D imes \Sigma_h$ by edge identifications in D
 - identify (edge $\times \Sigma_h$) with (edge $\times \varphi(\Sigma_h)$)

