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Abstract

The nonabelian Hodge correspondence provides a rich interplay of
structures from topology, analysis and algebraic geometry which has spurred
the curiosities of specialists and non-specialists alike. In the first part of
this talk I will outline the celebrated nonabelian Hodge correspondence,
due to Carlos Simpson, identifying certain representations of the fun-
damental group of a smooth projective complex variety with semistable
“Higgs” bundles. I will discuss the consequences of this identification at
the level of moduli spaces parametrizing these objects. Time permitting,
I will survey more recent extensions to the characteristic p or p--adic set-
tings.

I will begin the second half of the lecture with a discussion of the
Hodge filtration on nonabelian cohomology. Understanding the frame-
work of filtrations set forth allows for us to view the nonabelian Hodge
correspondence in a general light. Indeed, it becomes a manifestation of
the following general question: when is a graded object canonically the
associated graded of a filtered object? I will conclude this talk with a
discussion of some work of mine bringing this perspective into the setting
of higher algebra and higher categories, along with joint work with Robalo
and Toën applying this perspective towards an understanding of the HKR
filtration on Hochschild homology.

1 Part 1

1.1 Classical Hodge theory for real manifolds

Remark 1.1.1. If X is a smooth manifold, we can consider the de Rham
complex

C∞(X)
d−→ Ω1

X
d−→ Ω2

X
d−→ · · ·

where ΩnX denotes the real vector space of smooth differential n-forms on X
and the differential d : Ω•X → Ω•+1

X is the exterior derivative. One of the
landmark theorems in smooth manifold theory is the de Rham theorem, which
tells us that the cohomology of X with coefficients in R, which purely takes
into consideration the topological nature of the manifold X, is isomorphic to
the cohomology groups of the de Rham complex:

Hn(X,R) ∼= Hn
dR(X) .

Definition 1.1.2 (Laplacian and Harmonic Forms). If (X, g) is an Riemannian
manifold, then the presence of the metric g allows one to also define an adjoint
operator

δ : Ω•X → Ω•−1
X ,

which lowers the cohomological degree by one. We can then define the Lapla-
cian ∆ : Ω•X → Ω•X as

∆ = δd+ dδ .
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We say that a differential n-form is harmonic if ∆ω = 0. We will denote the
real vector space of harmonic n-forms of X by Hn(X).

Theorem 1.1.3 (The Hodge Theorem). There is an isomorphism

Hn
dR(X) ∼= Hn(X) .

Together with the de Rham theorem this tells us that each real cohomology
class on X has a unique harmonic representative.

1.2 Classical Hodge theory for complex projective vari-
eties

Remark 1.2.1. Let X be a smooth projective complex variety, or more gener-
ally a Kähler variety. The complex structure on the tangent bundle TX of X
gives rise to a decomposition of the complexified differential forms

ΩnX ⊗R C =
⊕
p+q=n

Ωp,qX where Ωp,qX := (Ω1,0
X )∧p ∧ (Ω0,1

X )∧q.

In local holomorphic coordinates (z1, . . . , zn), the space Ω1,0
X consists of holo-

morphic 1-forms ω =
∑
cjdzj where cj : Cn → C are holomorphic functions.

The space Ω0,1
X consists of antiholomorphic 1-forms α =

∑
cjdzj , and it fol-

lows from the Cauchy-Riemann equations that any holomorphic change of local
coordinates preserves Ω0,1

X and Ω1,0
X respectively.

Remark 1.2.2. The complexified de Rham differential d decomposes into a
holomorphic and anti-holomorphic part

d = ∂ + ∂

where
∂ : Ωp,q → Ωp+1,q and ∂ : Ωp,q → Ωp,q+1 .

This allows for a refined notion of harmonic forms, as well as formal adjoints
∂† and ∂†, and one defines ∆d,∆∂ ,∆∂ analogously to the real case. These
operators are related by the following theorem:

Theorem 1.2.3 (Kähler identities).

∆d = 2∆∂ = 2∆∂ ,

Remark 1.2.4. As a consequence, the three potentially distinct definitions
of being harmonic are equivalent, so we denote the vector space of harmonic
(p, q)-forms by Hp,q(X).
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Theorem 1.2.5 (Hodge Decomposition). There is a decomposition

Hn(X;C) '
⊕
p+q=n

Hp,q(X),

where Hn(−) denotes singular cohomology. We can further can identify

Hp,q(X) = Hp
Dol(X; ΩqX) = Hp,q(X) ,

where Hp
Dol denotes Dolbeault cohomology.

Remark 1.2.6. This data yields a finite decreasing filtration F• on Hp,q, to-
gether with a conjugate filtration F • on Hp,q, where

Fp(H) ∩ F q(H) = Hn n := p+ q.

This yields a notion of pure Hodge structure of weight n.

1.3 The nonabelian Hodge correspondence

Remark 1.3.1. By Serre’s GAGA theorem, there is a correspondence between
holomorphic and complex algebro-geometric data for nice enough sheaves. Note
that in what we have done above:

• The singular cohomology groups Hn(X,C) depend on the topology of the
space X.

• The de Rham cohomology groupsHn
dR(X) depend on the smooth structure

of the manifold X.

• The decomposition into harmonic forms uses the holomorphic (or complex
algebro-geometric) structure.

Thus we are mixing data from three very different areas of mathematics. Non-
abelian Hodge theory can be viewed as a categorification of this interplay of
ideas. Let us first recall a (rudimentary) version of the Riemann–Hilbert corre-
spondence.

Theorem 1.3.2 (The Riemann-Hilbert correspondence).

There is an equivalence of categories{
Local systems of complex

vector bundles on X

}


{

Complex vector bundles on X
with a flat connection

}
.

Remark 1.3.3. Objects on the left-hand side can be identified with monodromy
representations ρ : π1(X) → GLn(C), while objects on the right-hand side
can be thought of as pairs (E,∇) where E is a complex vector bundle and
∇ : E → E ⊗ Ω1

X is a connection such that

∇2 = 0 and ∇(rs) = sd(r) +∇(s)r .
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We want H1(X; GLn(C)) to be the space of such representations.

How do we make sense of the Hodge decomposition here? The answer: we will
use so-called Higgs bundles. This is a pair (E, θ) where E is a holomorphic
bundle and θ : E → E ⊗ Ω1

X is an OX -linear map with θ ∧ θ = 0.

Remark 1.3.4. This structure first arose in the work of Hitchin in studying
self-duality equations on Riemann surfaces, motivated by ideas from particle
physics – analogous versions of Higgs fields describe the Higgs boson particle.

The following notion interpolates between Higgs bundles and flat bundles:

Definition 1.3.5 (Harmonic bundles). A harmonic bundle on X is a smooth
complex vector bundle E with differential operators ∂ and ∂ along with algebraic
(or holomorphic) operators

θ, θ ∈ H0(X,End(E)⊗ Ω1
X) .

Remark 1.3.6. One can fix a Hermitian metric so that ∂ + ∂ is a unitary
connection and θ + θ is self-adjoint. Next, one sets

D = ∂ + ∂ + θ + θ and D′′ = ∂ + θ .

With the above conditions (E,D) is a vector bundle with flat connection and
(E, ∂, θ) = (E,D′′) is a Higgs bundle with θ ∧ θ = 0.

Remark 1.3.7. The operator ∂ defines a holomorphic structure on E by the
Koszul-Malgrange theorem, yielding a holomorphic bundle. Given a bundle with
flat connection and a Hermitian metric, one can define the data D′′K needed for
a Higgs structure, but then one needs to solve the system of PDEs (D′′K)2 = 0.
Conversely, given a Higgs bundle E, namely θ′′ = θ + ∂, one can define a
connection DK and if (DK)2 = 0 then this is a flat connection

Definition 1.3.8 (Stability and Semistability). A bundle E is semistable if
for every coherent subsheaf F ⊂ E,

deg(F )

rank(F )
≤ deg(E)

rank(E)
.

E is stable if this inequality is strict.

Definition 1.3.9. A flat bundle E is irreducible if it does not admit a nonzero
proper flat subbundle, and E is semisimple if it decomposes as a direct sum
of irreducible flat bundles.

Theorem 1.3.10 (Nonabelian Hodge theorem (Simpson)). Let X be a smooth
complex projective variety.

• There are equivalences of categories:

{Harmonic bundles on X}
 {Semisimple flat bundles on X}
 {Semisimple π1(X)-representations} .
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• There is an equivalence of categories:

{Harmonic bundles on X}

{

Direct sums
⊕

i Ei of stable Higgs bundles
Ei with c1(Ei)=c2(Ei)=0

}
.

• The resulting equivalence

{Semisimple π1(X)-representations}

{

Direct sums
⊕

i Ei of stable Higgs bundles
Ei with c1(Ei)=c2(Ei)=0

}
.

extends to an equivalence

{All π1(X)-representations}

{

Semistable bundles with
vanishing Chern classes

}
.

Remark 1.3.11. Semistability, along with the vanishing of the Chern classes
ch1 and ch2, is precisely the condition needed for

D2 = (∂ + ∂ + θ + θ)2 = 0 .

In the other direction, the associated tensor vanishes only if the bundle with
flat connection is semisimple.

Remark 1.3.12. For some historical context, the first part of the theorem is
due to Corlette and Donaldson, using the work of Eells and Sampson. The
second part is a generalization of the theorem of Narasimhan and Seshadri. In
the case when θ = 0, this follows work of Uhlenbeck-Yau, Hitchin, Beilinson-
Deligne, and others.

Remark 1.3.13. How can one view all of the above in light of the classical
Hodge correspondence? Recall that in the classical case we have a decomposition

H1(X,C) ∼= H1(X,OX)⊕H0(X,Ω1
X) .

In other words, a cohomology class on the left hand side can be thought of as
a pair (e, ξ) where e ∈ H1(X,OX) and ξ is a holomorphic 1-form. Similarly,
in the noncommutative version one studies the nonabelian cohomology set1

H1(X,GLn(C)) and its decomposition

H1(X,GLn(C)) ∼= H1(X,GLn(OX))⊕H0(X,End(E)⊗ Ω1
X) .

The decomposition tells us that a class on the left hand side can be thought of
as a pair (E, θ) where E is a holomorphic bundle and θ : E → E ⊗ Ω1

X is a
holomorphic map such that θ ∧ θ = 0.

1We shall see that it is really better to think of this as a moduli space/stack than a set.
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1.4 Moduli spaces

Remark 1.4.1. A key aspect of the nonabelian Hodge correspondence lies in
how the associated moduli spaces interact. We should really think ofH1(X,GLn(C))
as a moduli space or stack, so let’s define exactly what we mean by this.

Definition 1.4.2 (Representability). Consider a functor

F : C→ Groupoids

from the category C of discrete commutative k-algebras to the category of
groupoids. We say that such a functor is representable by a scheme/space/stack
if there is a scheme/space/stack X for which

F (A) ∼= HomC(Spec(A), X)

These are also typically required to satisfy descent with respect to a topology
on C.

Example 1.4.3 (Quotient stack). Let X be a scheme with an action of some
group scheme G. Then we can form the quotient stack X/G as the realisation
of the simplicial groupoid formed by the bar resolution

X/G := |X ⇒X ×G →→→· · ·| .

Remark 1.4.4. There are also other versions of quotient stacks that are rel-
evant in mathematics – one can also take GIT quotients, and Spec RG of the
ring of invariants.

We can use the functor of points point on view to define the Betti moduli space,
the de Rham moduli spaces, and the Higgs moduli space.

Construction 1.4.5. Let Γ be a finitely generated group. One defines a rep-
resenting scheme parameterizing representations R(Γ, n) = Map(Γ,GLn) by
sending

A 7→ Hom(Γ,GLn(A)) .

The reductive group GLn acts on R(Γ,GLn) and we let the Betti moduli
scheme be the quotient

M(Γ,GLn) = R(Γ, n)/GLn .

In particular, we will write

M(X,n) =M(π1(Xan),GLn) ,

where the Xan denotes the associated analytic space.

Construction 1.4.6. Fix a point x ∈ X. The de Rham moduli scheme
RdR(X,n) assigns to a scheme Y the set of isomorphism classes (V,D) of vector
bundles of rank n with flat connection and a “frame” α : V |x ∼= Cn. This also
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admits an action by the algebraic group GLn and one defines the de Rham
quotient stack as

MdR(X,n) = RdR(X,n)/GLn .

Construction 1.4.7. Let us denote by RDol(X,x, n) the moduli scheme of
semistable Higgs bundles with vanishing Chern classes and “frame” at x. Again,
this has a GLn action, and we obtain the Higgs moduli space by taking the
quotient stack

MDol(X,n) = RDol(X,x, n)/GLn .

Remark 1.4.8. Originally, the construction of these moduli spaces used GIT
quotients, and not quotient stacks, as done here. These moduli spaces are the
associated coarse moduli spaces for the relevant quotient stacks (they represent
the functors π0 of the stacks).

The identification at the level of moduli spaces/stacks are rather subtle. As
a consequence of the Riemann–Hilbert correspondence between holomorphic
systems of ODE’s and their monodromy representations, we have the following
result:

Proposition 1.4.9. There are isomorphisms between the associated complex
analytic spaces:

RdR(X,n)an ' RB(X,n)an and MdR(X,n)an 'MB(X,n)an .

Theorem 1.4.10. The correspondence provides an isomorphism of sets be-
tween the underlying points of MdR(X,n) and MDol(X,n), which yields a
homeomorphism between the underlying topological spaces:

MdR(X,n)top ∼=MDol(X,n)top .

1.5 The C∗-action

Remark 1.5.1. There is a natural action of C∗-action on Higgs bundles given
by

z · (E, θ) = (E, zθ) .

Via the equivalence of categories, we can transport this to an action on semistable
flat bundles. As a consequence, the moduli space MDol(X,n) acquires a Gm-
action.

Proposition 1.5.2. Semisimple flat bundles fixed by a Gm action are precisely
those which underlie complex variations of Hodge structure.

Definition 1.5.3. A representation ρ of the fundamental group π1(X) is rigid
if any nearby representation in RB(X,n) is conjugate to it.
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Conjecture 1.5.4 (Simpson’s motivicity conjecture). Rigid representations ρ
are direct factor in the monodromy representation of a motive, i.e a family of
varieties over X.

Remark 1.5.5. Recent work of Esnault-Groechenig making progress towards
this conjecture, by finding a model over integers, and then studying the p-
curvatures of the relevant connections modulo p. This utilizes characteristic p
versions of the non-abelian Hodge theorem due to Ogus-Vologodsky, and more
recent works of Lan-Sheng-Zuo in the p-adic setting.

2 Part 2

Remark 2.0.1. We want to consider an analog of the Hodge filtration for
nonabelian cohomology. Recall that in the classical case, a Hodge decomposition
correspond to decreasing filtrations on H∗(X;C). Think of H1(X,GLn(C)) as
a complex linear mapping stack

MB(X,n) := Maps(π1(X),GLn)/GL,

What is the analogue to the Hodge filtration on this?

Proposition 2.0.2 (Rees construction). Consider a pair (V, F ) where V is a
complex vector space, and F is a complete decreasing exhaustive filtration of
V . We will map F ∗(V ) to ξ(V, F ), which will be a submodule of V ⊗ C[t, t−1]
generated by t−pF p(V ). This is like a C[t]-lattice in V ⊗ C[t, t−1] and thus
a module over C[t]. Equip it with a Galois action to get a free sheaf over
A1 = Spec C[t] with a Gm-action.

Remark 2.0.3. The upshot is that we’ll get an equivalence of categories{
Gm-equivariant vector bundles

over A1

}

 {Filtered vector spaces} .

Definition 2.0.4 (Graded and filtered stacks). A graded stack is a stack over
the classifying stack BGm, and a filtered stack is a stack over A1/Gm.

Remark 2.0.5. We realize A1/Gm as the realization of a simplicial object:

A1/Gm =
∣∣A1 → A1 ×Gm ⇒ · · ·

∣∣.
There are pullback squares

X X̃ Xgr

Spec(C) A1/Gm BGm1

0

This endows Rγ(X,OX) with a filtration.
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2.1 Hodge Filtration on Nonabelian Cohomology

Remark 2.1.1. We realize H1(X,GLn(C)) as a stack and take the de Rham
stack MdR(X,n) over Spec C. A filtration on the de Rham stack is then the
stack M̃ over A1/Gm fitting into a pullback square

MdR(X,n) M̃

Spec(C) A1/Gm1

Similarly, one obtains the moduli stack of Higgs bundles MDol as

MDol(X,n) 'M ×
A1/Gm

BGm.

The idea (going back to Deligne) is to now construct a 1-parameter family.

Definition 2.1.2 (λ-Connection). Fix a smooth complex vector bundle E. A
λ-connection on E is an operator ∇λ : E → E ⊗ Ω1

X such that

∇λ(rf) = λd(r)f + r∇(f) and ∇2
λ = 0 .

where r is a coefficient, f is a section of E, and d is the de Rham differential.

Remark 2.1.3. Note that if λ = 0 this reduces to ∇(rf) = r∇(f). Setting
θ := ∇0 then precisely yields the data of a Higgs field. For λ = 1 the above
definition recovers the notion of a flat connection.

Proposition 2.1.4 (Key!). A harmonic bundle (E,D,D′′), where D,D′′ are
operators, gives rise to a family of flat λ-connections with

• A flat part (E1, D1) = (E, 0)

• A Higgs part (E0,∇0) = (E, θ)

Theorem 2.1.5 (Simpson). Let S be a scheme over A1, then there is a functor

(λ : S → A1) 7→ (E,∇, α)

where

• E is a bundle over X × S,

• ∇ is a λ-connection, and

• α : E|x ' Cn is a frame.

This functor is representable by a scheme RHodge(X,n) → A1 which yields a
map

MHodge(X,n)/GLn → A1.
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Setting M :=MHodge(X,n), M admits a C∗ action C∗ ' Gm we get

M/Gm → A1/Gm.

When λ is invertible we recover flat connections, and so there is a pullback:

MdR ×Gm M

Gm A1

y

Link to Diagram

Using that Spec k
0−→ A1, pulling back recovers MHodge.

Remark 2.1.6. The conditions of semistability and vanishing Chern classes
together allow us to lift a category of objects with an intrinsic notion of grad-
ing (e.g. MDol → BGm) to a category with an intrinsic notion of a filtration
(e.g. over A1/Gm).

2.2 Higher Algebra

Remark 2.2.1. Given a stable∞-category C, one can make sense of filtered ob-
jects in C and hence of filtered spectra, which can be thought of as sequential
diagrams

· · · −→ E(n+ 1) −→ E(n) −→ E(n− 1) −→ · · ·

By spectral algebraic geometry, affines are connective E∞-rings. We have

• Spec S

• Spec S[N] ' A1

• Spec S[Z] ' Gm
Note that there are two notions of affine line in spectral algebraic geometry, but
Spec S[N] is the more commonly used one.

We can thus define A1/Gm, as well as its ∞-category of quasicoherent sheaves
as the totalisation

QCoh(A1/Gm) = Tot (S[N]-Mod→ S[N× Z]-Mod⇒ · · ·) .

Theorem 2.2.2 (M.). There is a symmetric monoidal equivalence of categories

QCoh(A1/Gm) ' Spfil,
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where the right-hand side is the category of filtered spectra equipped with the
Day convolution product.

Remark 2.2.3. Pulling back a quasicoherent sheaf from A1/Gm is taking a
colimit of underlying objects, whereas pulling back from BGm amounts to taking
the associated graded. As a consequence, we can import nonabelian Hodge
theory into the setting of higher categories.

Question 2.2.4. Suppose C0 ⊆ C is a “graded ∞-category”. When does C0

lift to a category trivial over QCoh(A1/Gm)?

2.3 Hochschild Homology

Remark 2.3.1. The following is joint work with Marco Robalo and Bertrand
Toën.

Definition 2.3.2 (Hochschild homology). Recall that Hochschild homology
of a commutative k-algebra R can be defined as

HH(R/k) := S1 ⊗k R .

In terms of derived algebraic geometry, we have

Spec HH(R/k) = Maps(S1,Spec R)

Remark 2.3.3. The Hochschild–Kostant–Rosenberg (HKR) theorem can be
used to construct a complete decreasing filtration on Hochschild homology. The
existence of the HKR-filtration can also be explained as coming from a filtered
circle.

Theorem 2.3.4 (Moulinos-Robalo-Toën (MRT)). One can construct a filtered
group stack

S1
fil → A1/Gm

acting on a filtered loop stack

Lfil(k) = Maps/(A1/Gm)(S
1
fil, X)

which fit into a diagram of the following form:

LX Lfil(X) Spec Symˇ
k(Lk[−1])

Spec k A1/Gm BGm

where the left recovers Hochschild homology and the right recovers the de Rham
algebra.
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Remark 2.3.5. The top-right corner is a derived scheme whose cohomology
admits the structure of a mixed complex. Note that there is an S1 action on
L(X) and an S1

fil action on Lfil(X). We have a lift of the mixed complex to a
filtered object whose underlying complex is related to Hochschild homology.

Remark 2.3.6 (Perhaps slightly cryptic!). The filtered loop space Lfil(X)
is related via a 2-fold bar construction to the degeneration of moduli spaces
MdR  MDol.
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